Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 642
Filtrar
1.
Mymensingh Med J ; 33(2): 350-355, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38557509

RESUMO

Evaluation of the in vitro antibacterial activity of Methanolic extracts isolated from Black pepper seeds (Piper nigrum L.) against two infection causing pathogens, Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Between July 2022 and June 2023, this experimental study was conducted at the Mymensingh Medical College's Department of Pharmacology and Therapeutics in conjunction with the Department of Microbiology. Using the disc diffusion and broth dilution methods, the antibacterial activity of methanolic extract of black pepper seeds (MBPE) was evaluated at various doses. The solvents Methanol and 10.0% Di Methyl Sulfoxide (DMSO) were used to make the extract. Using the broth dilution procedure, the conventional antibiotic Ciprofloxacin was utilized and the outcome was contrasted with that of Methanol extracts. Methanolic extract of black pepper seeds (MBPE) at seven distinct concentrations (100, 80, 60, 40, 20, 10 and 5 mg/ml) were utilized, then later in chosen concentrations as needed to confirm the extracts' more precise margin of antimicrobial sensitivity. At 80 mg/ml and above doses of the MBPE, it had an inhibitory impact against the aforementioned microorganisms. For Staphylococcus aureus and Escherichia coli the MIC were 60 and 75 mg/ml in MBPE respectively. As of the MIC of Ciprofloxacin was 1µg/ml against Staphylococcus aureus and Escherichia coli. In comparison to MICs of MBPE for the test organisms, the MIC of Ciprofloxacin was the lowest. This study clearly shows that Staphylococcus aureus and Escherichia coli are sensitive to the methanolic extract of black pepper seeds' antibacterial properties.


Assuntos
Piper nigrum , Staphylococcus aureus , Humanos , Metanol , Extratos Vegetais/farmacologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Ciprofloxacina , Sementes , Escherichia coli
2.
Molecules ; 29(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474459

RESUMO

The essential oils and aroma derived from the leaves (L), stems (St), and spikes (s) of Piper nigrum L. cv. Guajarina were extracted; the essential oils were extracted using hydrodistillation (HD), and steam distillation (SD), and the aroma was obtained by simultaneous distillation and extraction (SDE). Chemical constituents were identified and quantified using GC/MS and GC-FID. Preliminary biological activity was assessed by determining the toxicity against Artemia salina Leach larvae, calculating mortality rates, and determining lethal concentration values (LC50). The predominant compounds in essential oil samples included α-pinene (0-5.6%), ß-pinene (0-22.7%), limonene (0-19.3%), 35 linalool (0-5.3%), δ-elemene (0-10.1%), ß-caryophyllene (0.5-21.9%), γ-elemene (7.5-33.9%), and curzerene (6.9-31.7%). Multivariate analysis, employing principal component analysis (PCA) and hierarchical cluster analysis (HCA), revealed three groups among the identified classes and two groups among individual compounds. The highest antioxidant activity was found for essential oils derived from the leaves (167.9 41 mg TE mL-1). Larvicidal potential against A. salina was observed in essential oils obtained from the leaves (LC50 6.40 µg mL-1) and spikes (LC50 6.44 µg mL-1). The in silico studies demonstrated that the main compounds can interact with acetylcholinesterase, thus showing the potential molecular interaction responsible for the toxicity of the essential oil in A. salina.


Assuntos
Artrópodes , Óleos Voláteis , Piper nigrum , Piper , Sesquiterpenos , Animais , Óleos Voláteis/química , Acetilcolinesterase , Cromatografia Gasosa-Espectrometria de Massas , Piper/química , Óleos de Plantas/química
3.
Food Res Int ; 182: 114187, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519195

RESUMO

The flavor profiles of fresh and aged fermented peppers obtained from four varieties were thoroughly compared in this study. A total of 385 volatile compounds in fermented pepper samples were detected by flavoromics (two-dimensional gas chromatography-time-of-flight mass spectrometry). As fermentation progressed, both the number and the total concentration of volatile compounds changed, with esters, alcohols, acids, terpenoids, sulfur compounds, and funans increasing, whereas hydrocarbons and benzenes decreased. In contrast to the fresh fermented peppers, the aged fermented samples exhibited lower values of pH, total sugars, and capsaicinoids but higher contents of organic acids and free amino acids. Furthermore, the specific differences and characteristic aroma substances among aged fermented peppers were unveiled by multivariate statistical analysis. Overall, 64 volatiles were screened as differential compounds. In addition, Huanggongjiao samples possessed the most abundant differential volatiles and compounds with odor activity values > 1, which were flavored with fruity, floral, and slightly phenolic odors. Correlation analysis demonstrated that the levels of 23 key aroma compounds (e.g., ethyl 2-methylbutyrate, 1-butanol, and ethyl valerate) showed a significantly positive correlation with Asp, Glu and 5 organic acids. By contrast, there is a negative association between the pH value and total sugar. Overall, aging contributed significantly to the flavor attributes of fermented peppers.


Assuntos
Frutas , Piper nigrum , Frutas/química , Odorantes/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Álcoois/análise , Fermentação , Ácidos/análise
4.
Sci Rep ; 14(1): 5752, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459176

RESUMO

Herbal spices are widely consumed as food additives owing to their distinct aroma and taste as well as a myriad of economic and health value. The aroma profile of four major spices including bay leaf, black pepper, capsicum, and fennel was tested using HS-SPME/GC-MS and in response to the most widely used spices´ processing methods including autoclaving and γ-radiation at low and high doses. Additionally, the impact of processing on microbial contamination of spices was tested using total aerobic count. GC-MS analysis led to the identification of 22 volatiles in bay leaf, 34 in black pepper, 23 in capsicum, and 24 in fennel. All the identified volatiles belonged to oxides/phenols/ethers, esters, ketones, alcohols, sesquiterpene and monoterpene hydrocarbons. Oxides/phenol/ethers were detected at high levels in all tested spices at ca. 44, 28.2, 48.8, 61.1%, in bay leaves, black pepper, capsicum, and fennel, respectively of the total blend and signifying their typical use as spices. Total oxides/phenol/ethers showed an increase in bay leaf upon exposure to γ-radiation from 44 to 47.5%, while monoterpene hydrocarbons were enriched in black pepper upon autoclaving from 11.4 in control to reach 65.9 and 82.6% for high dose and low dose of autoclaving, respectively. Cineole was detected in bay leaf at 17.9% and upon exposure to autoclaving at high dose and γ-radiation (both doses) its level increased by 29-31%. Both autoclaving and γ-radiation distinctly affected aroma profiles in examined spices. Further, volatile variations in response to processing were assessed using multivariate data analysis (MVA) revealing distinct separation between autoclaved and γ-radiated samples compared to control. Both autoclaving at 115 °C for 15 min and radiation at 10 kGy eliminated detected bioburden in all tested spices i.e., reduced the microbial counts below the detection limit (< 10 cfu/g).


Assuntos
Foeniculum , Piper nigrum , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Fenol/análise , Microextração em Fase Sólida/métodos , Quimiometria , Especiarias , Monoterpenos/análise , Éteres , Óxidos , Compostos Orgânicos Voláteis/análise
5.
Sci Rep ; 14(1): 5338, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438437

RESUMO

Pesticides are indispensable tools in modern agriculture for enhancing crop productivity. However, the inherent toxicity of pesticides raises significant concerns regarding human exposure, particularly among agricultural workers. This study investigated the exposure and associated risks of two commonly used pesticides in open-field pepper cultivation, namely, chlorothalonil and flubendiamide, in the Republic of Korea. We used a comprehensive approach, encompassing dermal and inhalation exposure measurements in agricultural workers during two critical scenarios: mixing/loading and application. Results revealed that during mixing/loading, dermal exposure to chlorothalonil was 3.33 mg (0.0002% of the total active ingredient [a.i.]), while flubendiamide exposure amounted to 0.173 mg (0.0001% of the a.i.). Conversely, dermal exposure increased significantly during application to 648 mg (chlorothalonil) and 93.1 mg (flubendiamide), representing 0.037% and 0.065% of the total a.i., respectively. Inhalation exposure was also evident, with chlorothalonil and flubendiamide exposure levels varying across scenarios. Notably, the risk assessment using the Risk Index (RI) indicated acceptable risk of exposure during mixing/loading but raised concerns during application, where all RIs exceeded 1, signifying potential risk. We suggest implementing additional personal protective equipment (PPE) during pesticide application, such as gowns and lower-body PPE, to mitigate these risks.


Assuntos
Fluorocarbonos , Nitrilas , Praguicidas , Ftalimidas , Piper nigrum , Sulfonas , Humanos , Fazendeiros , Medição de Risco , Benzamidas , Praguicidas/toxicidade
6.
Sci Rep ; 14(1): 7331, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538851

RESUMO

The selection of stable reference genes for the normalization of reverse transcription quantitative real-time PCR (RT-qPCR) is generally overlooked despite being the crucial element in determining the accuracy of the relative expression of genes. In the present study, the stability of seven candidate reference genes: actin (act), α-tubulin (atub), ß-tubulin (btub), translation elongation factor 1-α (ef1), elongation factor 2 (ef2), ubiquitin-conjugating enzyme (ubc) and 40S ribosomal protein S3A (ws21) in Phytophthora capsici has been validated. The validation was performed at six infection time points during its interaction with its susceptible host Piper nigrum, two developmental stages, and for the combined dataset. Four algorithms: geNorm, NormFinder, BestKeeper, and the ΔCt method were compared, and a comprehensive ranking order was produced using RefFinder. The overall analysis revealed that ef1, ws21, and ubc were identified as the three most stable genes in the combined dataset, ef1, ws21, and act were the most stable at the infection stages, and, ef1, btub, and ubc were most stable during the developmental stages. These findings were further corroborated by validating the P. capsici pathogenesis gene NPP1 expression. The findings are significant as this is the first study addressing the stability of reference genes for P. capsici-P. nigrum interaction studies.


Assuntos
Phytophthora , Piper nigrum , Reação em Cadeia da Polimerase em Tempo Real/métodos , Phytophthora/genética , Algoritmos , Genes de Plantas , Padrões de Referência , Perfilação da Expressão Gênica/métodos
7.
Sci Rep ; 14(1): 4789, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413819

RESUMO

Phytophthora blight severely threatens global pepper production. Grafting bolsters plant disease resistance, but the underlying molecular mechanisms remain unclear. In this study, we used P. capsici-resistant strain 'ZCM334' and susceptible strain 'Early Calwonder' for grafting. Compared to self-rooted 'Early Calwonder' plants, 'ZCM334' grafts exhibited delayed disease onset, elevated resistance, and reduced leaf cell damage, showcasing the potential of grafting in enhancing pepper resistance to P. capsici. Proteomic analysis via the iTRAQ technology unveiled 478 and 349 differentially expressed proteins (DEPs) in the leaves and roots, respectively, between the grafts and self-rooted plants. These DEPs were linked to metabolism and cellular processes, stimulus responses, and catalytic activity and were significantly enriched in the biosynthesis of secondary metabolites, carbon fixation in photosynthetic organizations, and pyruvate metabolism pathways. Twelve DEPs exhibiting consistent expression trends in both leaves and roots, including seven related to P. capsici resistance, were screened. qRT-PCR analysis confirmed a significant correlation between the protein and transcript levels of DEPs after P. capsici inoculation. This study highlights the molecular mechanisms whereby grafting enhances pepper resistance to Phytophthora blight. Identification of key genes provides a foundation for studying the regulatory network governing the resistance of pepper to P. capsici.


Assuntos
Capsicum , Phytophthora , Piper nigrum , Phytophthora/fisiologia , Proteômica , Resistência à Doença/genética , Doenças das Plantas/genética , Capsicum/genética
8.
Food Res Int ; 179: 114023, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342542

RESUMO

Currently, the authentication of ground black pepper is a major concern, creating a need for a rapid, highly sensitive and specific detection tool to prevent the introduction of adulterated batches into the food chain. To this aim, head space gas-chromatography ion mobility spectrometry (HS-GC-IMS), combined with machine learning, is tested in this initial, proof-of-concept study. A broad variety of authentic samples originating from eight countries and three continents were collected and spiked with a range of adulterants, both endogenous sub-products and an assortment of exogenous materials. The method is characterized by no sample preparation and requires 20 min for chromatographic separation and ion mobility data acquisition. After an explorative analysis of the data, those were submitted to two different machine learning algorithms (partial least squared discriminant analysis-PLS-DA and support vector machine-SVM). While the PLS-DA model did not provide fully satisfactory performances, the combination of HS-GC-IMS and SVM successfully classified the samples as authentic, exogenously-adulterated or endogenously-adulterated with an overall accuracy of 90 % and 96 % on withheld test set 1 and withheld test set 2, respectively (at a 95 % confidence level). Some limitations, expected to be mitigated by further research, were encountered in the correct classification of endogenously adulterated ground black pepper. Correct categorization of the ground black pepper samples was not adversely affected by the operator or the time span of data collection (the method development and model challenge were carried out by two operators over 6 months of the study, using ground black pepper harvested between 2015 and 2019). Therefore, HS-GC-IMS, coupled to an intelligent tool, is proposed to: (i) aid in industrial decision-making before utilization of a new batch of ground black pepper in the production chain; (ii) reduce the use of time-consuming conventional analyses and; (iii) increase the number of ground black pepper samples analyzed within an industrial quality control frame.


Assuntos
Piper nigrum , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Mobilidade Iônica/métodos , Compostos Orgânicos Voláteis/análise , Análise Discriminante
9.
J Agric Food Chem ; 72(8): 4063-4073, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38364207

RESUMO

White line-inducing principle (WLIP, 1), together with two new cyclic lipopeptides (CLPs) WLIPß (2) and WLIPγ (3), were characterized from the supernatant of Pseudomonas canadensis Q3-1 via precursor-directed biosynthesis (PDB) in the current study. They were purified from the supernatant of P. canadensis Q3-1 by solid-phase extraction (SPE) and high-performance liquid chromatography (HPLC), and their structures were mainly determined via bioinformatic analyses, spectrometric and spectroscopic techniques, as well as single crystal X-ray diffraction (XRD). These WLIPs share (R)-3-hydroxydecanoic acid (HDA), but they differ from each other in the composition of peptidic sequences. In addition, these CLPs showed biocontrol activities against Phytophthora blight (caused by Phytophthora capsici) in peppers. Collectively, this study has shown that PDB could be used for generating new CLPs in Pseudomonas spp. Moreover, we have confirmed that WLIP, WLIPß, and WLIPγ could be used as lead agrochemicals to control Phytophthora blight in peppers.


Assuntos
Phytophthora , Piper nigrum , Pseudomonas/química , Doenças das Plantas/prevenção & controle
10.
J Agric Food Chem ; 72(3): 1607-1617, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38190504

RESUMO

Piper nigrum is a popular crop that can be used as seasoning or as an additive but its active ingredients also have an effect on the nervous system. Nineteen new amide alkaloids (1a/1b, 2-5, 6a/6b, 7, 8a/8b, 9, 10a/10b, 11a-11b, 12-14) were isolated from P. nigrum, guided by inhibitory activity of AChE and LC-MS/MS based on GNPS. The configurations were determined by extensive spectral analysis, Bulkiness rule, and NMR calculations. The inhibitory activities of AChE/BuChE and Aß aggregation were tested, and the results showed compounds 2, 7, and 12 had significant inhibitory activities. These components were identified in the crude fraction and their relative quantities were tested, which suggested that compound 2 was the index component in the active site from P. nigrum.


Assuntos
Alcaloides , Piper nigrum , Piper , Piper nigrum/química , Extratos Vegetais/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Alcaloides/química , Piper/química
11.
Molecules ; 29(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257382

RESUMO

Schinus terebinthifolius Raddi, popularly known as "Pink pepper", is a plant native to Brazil. The objective of this work was to analyze the chemical composition and the antioxidant and antibacterial potential of essential oils (EOs) from the leaves, fruits and twigs of S. terebinthifolius, aiming for their application in food safety. EOs were obtained by hydrodistillation and the chemical composition was determined by gas chromatography coupled to mass spectrometry. Phenolic compounds were quantified and antioxidant activity was evaluated using three different methods. The antibacterial activity was determined by the broth microdilution method against foodborne bacteria. In the chemical analysis, 22 compounds were identified in the leaves, 13 compounds in the fruits and 37 compounds in the twigs, revealing the presence of the main compounds germacrene D (12.04%, 15.78%, 20,41%), caryophyllene (15.97%, 3.12%, 11.73%), α-pinene (11.6%, 17.16%, 2.99%), ß-pinene (5.68%, 43.34%, 5.60%) and γ-gurjunene (16,85%, 3,15%) respectively. EOs showed better antioxidant potential using the ß-carotene/linoleic acid method with 40.74, 61.52 and 63.65% oxidation inhibition for leaves, fruits and twigs, respectively. The EO from the leaves showed greater antibacterial potential against Escherichia coli and Staphylococcus aureus with a minimum inhibitory concentration (MIC) of 0.62 mg mL-1, a value lower than the MIC of sodium nitrite (5.00 mg mL-1), the antimicrobial standard synthetic. The activities of pink pepper EOs suggest their potential as a biopreservative in foods.


Assuntos
Óleos Voláteis , Piper nigrum , Frutas , Antioxidantes/farmacologia , Schinus , Óleos Voláteis/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Antibacterianos/farmacologia , Escherichia coli
12.
Sci Rep ; 14(1): 1404, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228767

RESUMO

Plants get exposed to diseases, insects and fungus. This causes heavy damages to crop resulting in various leaves diseases. Leaf diseases can be diagnosed at an early stage with the aid of a smart computer vision system and timely disease prevention can be targeted. Black pepper is a medicinal plant that is extensively used in Ayurvedic medicine because of its therapeutic properties. The proposed work represents an intelligent transfer learning technique through state-of-the-art deep learning implementation using convolutional neural network to predict the presence of prominent diseases in black pepper leaves. The ImageNet dataset available online is used for training deep neural network. Later, this trained network is utilized for the prediction of the newly developed black pepper leaf image dataset. The developed data set consist of real time leaf images, which are candidly taken from the fields and annotated under supervision of an expert. The leaf diseases considered are anthracnose, slow wilt, early stage phytophthora, phytophthora and yellowing. The hyperparameters chosen for tuning in to deep learning models are initial learning rates, optimization algorithm, image batches, epochs, validation and training data, etc. The accuracy obtained with 0.001 learning rate ranges from 99.1 to 99.7% for the Inception V3, GoogleNet, SqueezeNet and Resnet18 models. Proposed Resnet18 model outperforms all model with 99.67% accuracy. The resulting validation accuracy obtained using these models is high and the validation loss is low. This work represents improvement in agriculture and a cutting edge deep neural network method for early stage leaf disease identification and prediction. This is an approach using a deep learning network to predict early stage black pepper leaf diseases.


Assuntos
Piper nigrum , Redes Neurais de Computação , Inteligência Artificial , Folhas de Planta , Aprendizado de Máquina
13.
Poult Sci ; 103(3): 103404, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242053

RESUMO

The cytokine storm induced by duck hepatitis A virus type 1 (DHAV-1) infection significantly contributes to severe, rapid deaths and economic losses in the duck industry in Egypt. This study aimed to investigate the potential inhibitory effect of a nanoemulsion containing turmeric and black pepper oil on the immune response and pathogenesis of DHAV-1 in ducklings. A total of 105 ducklings from nonvaccinated breeders were divided into 5 experimental groups, each comprising 21 birds. The negative control group (G1) remained noninfected with DHAV-1 and nontreated with nanoemulsion, while the positive control group (G2) was infected with DHAV-1 but not treated with nanoemulsion. The other 2 groups (G3, the supplemented group which was noninfected with DHAV-1), and group 4 (the prophylactic group G4) which was infected with DHAV-1, both received nanoemulsion throughout the experiment. Group 5 (G5, the therapeutic group), on the other hand, which was infected with DHAV-1 received nanoemulsion only from the onset of clinical signs. At 5 days old, the ducklings in the positive control (G2), the prophylactic (G4), and the therapeutic group (G5) were infected with DHAV-1. All the ducklings in the infected groups exhibited depression, anorexia, and opisthotonos, and their livers displayed various degrees of ecchymotic hemorrhage, liver enlargement, and microscopic pathological lesions. Notably, the positive control group (G2) experienced the most severe and pronounced effects compared to the other infected groups treated with the nanoemulsion. Meanwhile, the viral RNA loads were lower in the liver tissues of the infected ducklings treated with the nanoemulsion (G4, and G5) compared to the positive control group G2. Additionally, the nanoemulsion effectively modulated proinflammatory cytokine expression, antioxidant enzymes, liver enzymes, and lipid profile of treated ducklings. In conclusion, the turmeric and black pepper oil nanoemulsion has the potential to be a therapeutic agent for regulating and modulating the immune response, decreasing DHAV-1-induced cytokine storms, and minimizing mortality and economic losses in the duck business. More research is needed to understand how turmeric and black pepper oil nanoemulsion alleviates DHVA-1-induced cytokine storms and lowers duckling mortality.


Assuntos
Síndrome da Liberação de Citocina , Vírus da Hepatite do Pato , Piper nigrum , Óleos de Plantas , Animais , Síndrome da Liberação de Citocina/veterinária , Curcuma , Patos , Galinhas
14.
PeerJ ; 12: e16792, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250728

RESUMO

Background: Pepper (Capsicum annuum L.) is a valuable horticultural crop with economic significance, and its purple fruit color is attributed to anthocyanin, a phytonutrient known for its health-promoting benefits. However, the mechanisms regulating anthocyanin biosynthesis in pepper have yet to be fully elucidated. Methods: RNA sequencing (RNA-seq) was utilized to analyze the transcriptome of fruits from three purple-fruited varieties (HN191, HN192, and HN005) and one green-fruited variety (EJT) at various developmental stages. To determine the relationships between samples, Pearson correlation coefficients (PCC) and principal component analysis (PCA) were calculated. Differential expression analysis was performed using the DESeq2 package to identify genes that were expressed differently between two samples. Transcription factors (TF) were predicted using the iTAK program. Heatmaps of selected genes were generated using Tbtools software. Results: The unripe fruits of HN191, HN192, and HN005, at the stages of 10, 20, and 30 days after anthesis (DAA), display a purple color, whereas the unripe fruits of variety EJT remain green. To understand the molecular basis of this color difference, five transcriptome comparisons between green and purple fruits were conducted: HN191-10 vs EJT-10, HN191-20 vs EJT-20, HN191-30 vs EJT-30, HN192-30 vs EJT-30, and HN005-30 vs EJT-30. Through this analysis, 503 common differentially expressed genes (DEGs) were identified. Among these DEGs, eight structural genes related to the anthocyanin biosynthesis pathway and 24 transcription factors (TFs) were detected. Notably, one structural gene (MSTRG.12525) and three TFs (T459_25295, T459_06113, T459_26036) exhibited expression patterns that suggest they may be novel candidate genes involved in anthocyanin biosynthesis. These results provide new insights into the regulation of anthocyanin biosynthesis in purple pepper fruit and suggest potential candidate genes for future genetic improvement of pepper germplasm with enhanced anthocyanin accumulation.


Assuntos
Frutas , Piper nigrum , Frutas/genética , Antocianinas/genética , Genes Reguladores , Perfilação da Expressão Gênica , Fatores de Transcrição/genética
15.
J Agric Food Chem ; 72(1): 437-448, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38164789

RESUMO

Inflammatory bowel disease (IBD) is a chronic and recurrent disease. Increasing evidence suggests a higher incidence of depression in IBD patients compared with the general population, but the underlying mechanism remains uncertain. Rattan pepper polysaccharide (RPP) is an important active ingredient of rattan pepper, yet its effects and mechanisms on intestinal inflammation and depression-like behavior remain largely unknown. This study aims to investigate the ameliorating effect of RPP on dextran sulfate sodium salt (DSS)-induced intestinal inflammation and depression-like behavior as well as to reveal its mechanism. Our results indicate that RPP effectively ameliorated intestinal microbiota imbalance and metabolic disorders of short-chain fatty acids (SCFAs) and bile acids in mice with DSS-induced inflammation, contributing to the recovery of intestinal Th17/Treg homeostasis. Importantly, RPP effectively alleviated brain inflammation caused by intestinal inflammatory factors entering the brain through the blood-brain barrier. This effect may be attributed to the inhibition of the TLR4/NF-κB signaling pathway, which alleviates neuroinflammation, and the activation of the CREB/BDNF signaling pathway, which improves synaptic dysfunction. Therefore, our findings suggest that RPP may play a role in alleviating DSS-induced gut inflammation and depression-like behavior through the microbiota-gut-brain axis.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Piper nigrum , Humanos , Animais , Camundongos , Eixo Encéfalo-Intestino , Cloreto de Sódio na Dieta , Cloreto de Sódio , Inflamação/tratamento farmacológico , Sulfato de Dextrana/efeitos adversos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo
16.
J Physiol Anthropol ; 43(1): 3, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167228

RESUMO

BACKGROUND: Black pepper is one of the most popular spices globally. As black pepper essential oil has not yet been used in the context of aromatherapy, this study examined the effect of black pepper aroma on cardiac and peripheral autonomic nervous system (ANS) activity under stressful conditions using an olfactometer to administer aroma in a precise and controlled manner to ensure reproducibility. METHODS: A within-participant design experiment was conducted with 20 male university students who performed a 30-min calculation task as a short-term stressor under three aroma conditions: black pepper, ginger, and dipropylene glycol (DPG) (scentless air as a control). Each aroma was sporadically delivered (first 20 s of each 1-min interval) with the olfactometer during the task. Electrocardiograms and skin conductance level (SCL) were measured to evaluate ANS's physiological acute stress response. Subjective evaluations for the given stressful task and impressions on the types of aromas were assessed. RESULTS: The physiological acute stress response induced by the short-term stressor, which is characterized by the enhancement of the heart rate (HR) and SCL and decreases in the heart rate variability (HRV), was suppressed with black pepper: the increase in HR and reduction in HRV from the baseline were 38.9% (p = 0.048 when compared with DPG) and 32.9% smaller (p = 0.002 for multiple comparisons) than those in DPG, respectively, and the increase of SCL was 15.5% smaller (p = 0.005 for multiple comparisons) than that in ginger. However, there was no significant difference in subjective scores among the conditions. CONCLUSION: Although black pepper is a stimulative agent, the study findings showed that black pepper aroma alleviated the physiological acute stress response, which can be beneficial in aromatherapy under stressful conditions.


Assuntos
Odorantes , Piper nigrum , Humanos , Masculino , Reprodutibilidade dos Testes , Coração , Eletrocardiografia
17.
Food Res Int ; 177: 113920, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225121

RESUMO

The current study aimed to investigate the influence of pin-to-plate atmospheric cold plasma treatment (ACP) on the microbial decontamination efficacy, physical (water activity, color, texture), and bioactive (total phenolic and anti-oxidant capacity, volatile oil profile) of three major spices cinnamon, black pepper, and fennel at three different voltages (170, 200, 230 V) and exposure time (5, 10, 15 min). The surface etching and oxidative reactions of cold plasma is anticipated to cause microbial decontamination of the spices. In accordance with this, the ACP treatment significantly reduced the yeast and mold count of cinnamon, black pepper, and fennel, resulting in 1.3 Log CFU/g, 1.1 Log CFU/g, and 1.0 Log CFU/g, respectively even at the lowest treatment at 170 V-5 min. While at the highest treatment of 230 V-15 min, complete decontamination in all the samples was observed due to the plasma-induced microbial cell disruption. The water activity of samples reduced post-treatment 0.69 ± 0.02 to 0.51 ± 0.03 for cinnamon, 0.61 ± 0.03 to 0.49 ± 0.01 for pepper, and 0.60 ± 0.02 to 0.43 ± 0.02 for fennel which further reassures better microbial stability. The color and textural properties were significantly unaffected (p > 0.05) preserving the fresh-like attributes. The total phenolic content was increased for cinnamon (2.26 %), black pepper (0.11 %), and fennel (0.33 %) after plasma treatment at 230 V-15 min due to the cold plasma surface etching phenomenon. However, the essential oil composition revealed no significant variation in all three spices' control and treated samples. Thus, the study proves the potential of the atmospheric pressure cold plasma for the complete decontamination of the investigated spices (cinnamon, pepper, fennel) without remarkable changes in the volatile oil profile.


Assuntos
Foeniculum , Óleos Voláteis , Piper nigrum , Gases em Plasma , Gases em Plasma/farmacologia , Cinnamomum zeylanicum , Água , Óleos Voláteis/farmacologia
18.
Int J Biol Macromol ; 254(Pt 3): 128045, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37956812

RESUMO

In the current study, sodium caseinate and chitosan-based composite edible films were developed with the incorporation of black pepper (Piper nigrum) essential oil (BPO) in various concentrations (0.05, 0.1 and 0.15 %) for potential food packaging applications. The chemical composition of BPO was determined using GCMS and the major compound detected were ß-caryophyllene, limonene, ß-phellandren, pinene, copaene and α-humulene. The addition of BPO resulted in an increase in the thickness, EAB, WVP, moisture content and swelling index values of the films; however, the TS and water solubility decreased. The inclusion of BPO led to a substantial enhancement in the DPPH and ABTS radical scavenging capabilities of the edible films. SEM micrographs demonstrated intermolecular interaction between BPO, sodium caseinate, and chitosan. FTIR spectra confirmed the interaction of the functional groups of the polymers and BPO. The incorporation of the BPO increased the crystallinity of the films. Moreover, the thermal analysis including TGA, DSC and DTG demonstrated an increase in the thermal stability of the edible films with the addition of the BPO. These findings demonstrated that sodium caseinate and chitosan composite based edible films loaded with BPO can be used as sustainable active food packaging material.


Assuntos
Quitosana , Filmes Comestíveis , Óleos Voláteis , Piper nigrum , Quitosana/química , Antioxidantes/química , Caseínas , Embalagem de Alimentos/métodos
19.
Plant J ; 117(1): 107-120, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37753665

RESUMO

Black pepper (Piper nigrum L.), the world renown as the King of Spices, is not only a flavorsome spice but also a traditional herb. Piperine, a species-specific piper amide, is responsible for the major bioactivity and pungent flavor of black pepper. However, several key steps for the biosynthesis of piperoyl-CoA (acyl-donor) and piperidine (acyl-acceptor), two direct precursors for piperine, remain unknown. In this study, we used guilt-by-association analysis of the combined metabolome and transcriptome, to identify two feruloyldiketide-CoA synthases responsible for the production of the C5 side chain scaffold feruloyldiketide-CoA intermediate, which is considered the first and important step to branch metabolic fluxes from phenylpropanoid pathway to piperine biosynthesis. In addition, we also identified the first two key enzymes for piperidine biosynthesis derived from lysine in P. nigrum, namely a lysine decarboxylase and a copper amine oxidase. These enzymes catalyze the production of cadaverine and 1-piperideine, the precursors of piperidine. In vivo and in vitro experiments verified the catalytic capability of them. In conclusion, our findings revealed enigmatic key steps of piperine biosynthetic pathway and thus provide a powerful reference for dissecting the biosynthetic logic of other piper amides.


Assuntos
Piper nigrum , Piper nigrum/genética , Alcamidas Poli-Insaturadas , Piperidinas , Perfilação da Expressão Gênica , Metaboloma
20.
J Food Prot ; 87(2): 100209, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38142824

RESUMO

Radiofrequency (RF) heating has been extensively studied for pasteurizing low-moisture foods. Currently, bulk foods are treated with radiofrequency; potential cross-contamination may occur during packaging of pasteurized products. As an alternative, in-package RF processing was evaluated for Salmonella inactivation on black peppercorns and dried basil leaves and prevention of cross-contamination during storage postprocessing. In-package steaming refers to the process in which the samples were heated in a steam vent package to generate and retain steam during the treatment. This treatment achieved good heating uniformity which could be because of the circulation of steam within the package. One-way steam vent allowed the release of excess steam once a threshold pressure was achieved and later returned to its original position to seal the package, when the RF energy was removed. In-package RF steaming of black peppercorns and dried basil leaves for 135 s and 40 s, respectively, resulted in more than 5 log reduction of Salmonella. The steam vent remained stable posttreatment and properly sealed the package to protect the product from any external contamination. These results indicate that the use of steam vent could effectively pasteurize black peppercorns and dried basil leaves could be beneficial in preventing the potential cross-contamination postprocessing.


Assuntos
Ocimum basilicum , Piper nigrum , Vapor , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Salmonella , Especiarias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...